Using Neural Imaging to Inform the Instruction of Mathematics

John R. Anderson
Shawn Betts
Jennifer L. Ferris
Jon M. Fincham
Carnegie Mellon University

Framework for Today's Talk

Our Research Program:

$>$ Develop a cognitive architecture (ACT-R) of how people perform complex cognitive tasks.
$>$ Within that architecture develop detailed models of how students learn mathematics.
>Build instructional systems (Cognitive Tutors) that are based on these models.
$>$ Have the instructional experiments inform the cognitive architecture.
Today's Talk:
>Describe how we have brought ACT-R and fMRI brain imaging together in the context of Cognitive Tutors.

The Algebra Tutor

Currently teaches about 500,000 students in the United States

Cognitive Tutors

$>$ Cognitive Model: A system that can solve problems in the various ways students can

$>$ Model Tracing: Follows student through their individual approach a problem -> context-sensitive instruction
> Knowledge Tracing: Assesses student's knowledge growth -> individualized activity selection and pacing

Brain Imaging and Cognitive Tutors

$>$ Cognitive Tutors work by using cognitive models to interpret the student's behavior.
$>$ Cognitive Tutors are limited by the crude nature of the cognitive models and the difficulty of diagnosis using the behavioral event stream.
$>$ One contribution of brain imaging would be to improve the sophistication of the underlying cognitive models.
>Another contribution of brain imaging would be to help diagnose when a student is thinking what.

The Experimental Tutor

$>$ We have developed a experimental tutoring system based on the Algebra 1 curriculum in Foerster (1990) for solving linear equations.
$>$ The tutoring system is minimalist for the purposes of studying students in an fMRI scanner, but involves basic instruction, error feedback, and help on request.
$>$ We have also developed a data-flow isomorph of this system which can be used with adults.
$>$ Results are very similar for children and adults.

Experiment

$>$ Goal 1: Discriminate between on task and off task behavior.
$>$ Goal 2: Identify problem student is solving and where they are in that problem.
$>$ Students goal through the curriculum in 5 sessions on Days 0-4 and then do similar material on Day 5 as they did on Day 1.
$>$ They are scanned on Days 1 and 5.
$>$ To create off-task moments we insert periods of n-back at reasonable points of transition in the equation solving.
>Because we have detailed computer logs we have a pretty good definition of ground truth -- where they actually are.

Earliest Material:Transformation Phase

Problem 1 of 17

$$
\begin{array}{|l|l|}
\hline \text { New Equation } & \begin{aligned}
-10 & =17 \\
x & =17+10
\end{aligned}
\end{array}
$$

Note:
All actions are with a mouse

Phase 2: Enforced Distraction: n-back: Detect Repeated Letters

Earliest Material: Evaluation Phase

$$
x-10=17
$$

$$
\begin{array}{|l|l}
\hline \text { Resulting Equation } & \begin{array}{l}
x=17+10 \\
x=27
\end{array}
\end{array}
$$

-Followed by more n-back \& transition to next problem

An Example of Mind Reading

$>$ Representative example: first student going through his first 8-minute sequence of problems alternating with n back.
$>$ We are going to see every 2 seconds what the student sees on the screen and what the algorithm predicts the student is seeing on the screen given their imaging data.
$>$ Green will indicate material that involves mathematical problem solving according to our model and red will indicate off-task time.
$>$ This is a sketch in powerpoint of a movie I would like to make of the actual task to illustrate the potential of this methodology.

Student
 Predict

Minute 1
New Scan every 2
seconds
+
+
$x-10=17$
$n-b a c k$
$n-b a c k$
$n-b a c k$
$n-$ back
$n-b a c k$
$n-b a c k$
$x=17+10$
$x=17+10$
$x=17+10$
$x=17+10$
$x=17+10$
$n-b a c k$
$n-b a c k$
$n-b a c k$
$n-b a c k$

Student

Predict

Minute 2

Start with Fixation	n-back	n-back
Red indicates Off Task	n-back	$X=27$
Equation appears on 3rd scañ	$X=27$	
Green indicates On Task $=27$	$X=27$	
New Problem	$X=27$	+
Prediction Early	+	+
Back in Synch	$X+4=13$	$X+4=13$
	$X+4=13$	$X+4=13$

First Scan Prediction is wrobregk n-back
Prediction Correct Againn-back n-back
n-back n-back
n-back n-back
n-back n-back
n-back $\quad X=13-4$
$x=13-4 \quad x=13-4$
$X=13-4 \quad X=13-4$
$X=13-4 \quad X=13-4$
X = 13-4 n-back
$X=13-4 \quad n$-back
n-back n-back
n-back n-back
n-back n-back
n-back n-back
n-back $\quad X=9$

Student Predict

Minute 3

n-back	+
$x=9$	+
+	$5 * x=90$
+	5 * $X=90$
$5 * x=90$	$5 * X=90$
5 * $X=90$	5 * $X=90$
$5 * X=90$	$5 * X=90$
$5 * X=90$	$5 * X=90$
$5 * X=90$	5 * $X=90$
5 * $\mathrm{X}=90$	5 * $\mathrm{X}=90$
n-back	n-back
$x=90 / 5$	X = 90 / 5
$x=90 / 5$	$x=90 / 5$
$x=90 / 5$	$x=90 / 5$
$x=90 / 5$	$x=90 / 5$
$x=90 / 5$	X = 90 / 5
$x=90 / 5$	n-back
n-back	n-back
n-back	$x=18$
n-back	$X=18$
n-back	$X=18$
n-back	+

Student

Predict

Minute 4

n-back	+
X = 18	X/3 = 21
+	X/3 = 21
+	$x / 3=21$
X / 3 = 21	X / 3 = 21
$\mathrm{X} / 3=21$	$\mathrm{x} / 3=21$
$\mathrm{x} / 3=21$	$\mathrm{x} / 3=21$
X / 3 = 21	X / 3 = 21
X / 3 = 21	X / 3 = 21
X / 3 = 21	n-back
n-back	X $=21$ *
n-back	X $=21$ * 3
X $=21$ * 3	$\mathrm{X}=21$ *
$\mathrm{X}=21$ * 3	$\mathrm{X}=21$ * 3
$\mathrm{X}=21$ * 3	X $=21$ * 3
X $=21$ * 3	n-back
n-back	$\mathrm{X}=63$
X = 63	+
+	+
+	$\mathrm{X}-7=16$
$X-7=16$	$X-7=16$

Student Predict

Minute 5

$X-7=16$	$X-7=16$
$X-7=16$	$X-7=16$
n-back	n-back
n-back	n-back
n-back	n-back
n-back	n n-back
n-back	n-back
n-back	$X=16+7$
$X=16+7$	$X=16+7$
$n-$ back	$X=16+7$
n-back	$n-$ back
$n-$ back	$n-$ back
n-back	n-back
$n=$ back	n-back
$X=23$	$X=23$
$X=23$	+
+	$X+$
+	$X-32=95$
$X-32=95$	$X-32=95$

Student

Minute 6

$$
\begin{aligned}
& x-32=95 \\
& X-32=95 \\
& \text { n-back } \\
& X=95+32 \\
& X=95+32 \\
& X=95+32 \\
& =95+32 \\
& X=95+32 \\
& x=95+32 \\
& X=95+32 \quad X=95+32 \\
& \mathrm{X}=95+32 \quad \text { n-back } \\
& \text { X = } 127 \\
& + \\
& + \\
& x+54=74 \quad n \text {-back } \\
& \text { n-back }
\end{aligned}
$$

Predict

Student

Minute 7

n-back	n-back
n-back	n-back
n-back	n-back
n-back	n-back
n-back	X $=74-54$
$\mathrm{X}=74-54$	$\mathrm{X}=74-54$
$\mathrm{X}=74-54$	$\mathrm{X}=74-54$
$\mathrm{X}=74-54$	X = 74-54
$\mathrm{X}=74-54$	n-back
n-back	$x=20$
X $=20$	$\mathrm{X}=20$
$\mathrm{X}=20$	+
+	+
+	$X+91=87$
X + 91-87	$x+91=87$
$x+91=87$	$x+91=87$
$x+91=87$	$x+91=87$
X + 91-87	$x+91=87$
X $+91=87$	$x+91=87$
n-back	n-back

Student Predict

Minute 8

$X=87-91$	$X=87-91$
$X=87-91$	$X=87-91$
n-back	$X=87-91$
n-back	n-back
$X=-4$	n-back
Done	$X=-4$
Done	Done
Done	Done
Done	Done

Statistics of this Example

$>$ Student takes 227 scans to go through 33 states to solve 8 problems.
$>$ Prediction is never off by more than 1 state and this happens on 32 of the 227 scans.
>1 will try to explain how we combine a cognitive model and fMRI data to obtain this result.
-But first lets see whether we really need both the cognitive model and fMRI data.

You Need Both a Model \& fMRI Statistics on 210 Blocks

Region	x	y	z
1. P R Manual	41	-20	50
2. P L Manual	-41	-20	50
3. P R ACC	7	10	39
4. P L ACC	-7	10	39
5. P R Vocal	43	-14	33
6. P L Vocal	-43	-14	33
7. P R PPC	23	-63	40
8. P L PPC	-23	-63	40
9.P R LIPFC	43	23	24
10. P L LIPFC	-43	23	24
11. P R Caudate	14	10	7
12. P L Caudate	-14	10	7
13. P R Auditory	46	-22	9
14. P L Auditory	-46	-22	9
15. P R Fusiform	42	-61	-9
16. P L Fusiform	-42	-61	-9
17. E R Premotor	32	1	58
18. E R PFC	44	23	36
19. E R Ang Gyrus	37	-48	43
20. E L PFC	-46	24	32
21. E L PPC	-29	-60	42
22. E R PPC	13	-73	50
23. E R Orb Frontal	47	46	0
24. E L Orb Frontal	-26	48	-6
25.E R Occ Gyrus	23	-89	-2
26. E L Occ Gyrus	-20	-90	-5
27. E L Occ Gyrus	-19	-77	-13
28. E R Cerebellum	28	-61	-18

fMRI Analysis

>16 predefined regions with 12 exploratory analysis combined to predict On and Off task.
>Graph displays squared weights.
$>$ Left posterior parietal close to predefined most predictive. $>$ But all 28 much better than any region singly.

Performance with Combined Signal

$>$ Combined activity offers moderate discrimination of ON versus OFF task. $>$ Regions and weights defined on Day 1 data generalize to Day 5 .
>However, fMRI by itself it offers poor basis for identifying where student is in the sequence of problems. We need a cognitive model.

Modules in ACT-R Cognitive Architecture

50 Sec of Model Interaction with Algebra Tutor

On and Off Periods in ACT-R Model Interaction

Visual
Procedural
Goal
Retrieval
- Imaginal
Manual

$>$ Model predicts length of On intervals for particular problems which determines time to solve them.
>These times are variable and the model predicts the distribution of times.

Time to Solve Problems

$>$ The model predicts the distribution of times to solve problems on both days and for various sections of material.
$>$ Because of learning in ACT-R, parameters defined on Day1 successfully predict problem times on Day 5.
$>$ However using these distributions alone offers poor basis for identifying where student is in the sequence of problems. We need fMRI.
(a) Sect. 1-7 Invert

Combining Model and fMRI: Hidden Markov Model (HMM) Algorithms

$>$ We are looking for an interpretation of the m scans in a block that contains n problems as a linear sequence of $4 n+1$ states.
$>$ The number of such interpretations is $\frac{(m-1)!}{(4 n)(m-4 n-1)!}$
$>$ The probability of any of these interpretations can be calculated from the probabilities of interval lengths for a state and likelihood of the signal magnitudes as ON and OFF task.
$>$ Future actions only depend on the current state. Since the states are not directly observable and their durations are variable the model a hidden semi-Markov process.
$>$ Dynamic programming algorithms associated with hidden Markov models can efficiently compute the probability that the student is in any state on a particular scan.

Both Model and fMRI are Needed

$>$ Our prediction for any scan is the most probable state according to the HMM algorithm.
$>$ This is achieved by using the distribution of lengths of state intervals from the model and the distribution of ON and OFF signal magnitudes from fMRI.
$>$ Model-only predictions are obtained by using just one distribution for both ON and OFF signal magnitudes, thus negating the fMRI contribution.
\quad fMRI-only predictions are obtained by making all interval lengths equally probable, thus negating the model contribution.

Comparison on First Example Block

Model + fMRI:

Identifies all 33 States

Model Only:
Identifies Only 29 States

Predictions Generalize from Day 1 to Day 5

$>$ Regions, weights, and model parameters were estimated from Day 1. $>$ There is the danger of overfitting in our claimed success for Day 1 data. $>$ They can be used to predict with no further estimation Day 5. $>$ Learning effects in the model predicts a speed up for Day 5 which matches students.

Day 5 Exemplifies Model Tracing in Cognitive Tutors

$>$ The parameters were all estimated from group data.
Typically there is not enough data about a single student to produce reliable parameter estimations.
$>$ The parameters are estimated from a situation (Day 1) different than the one on which they are used (Day 5). This is not typical in most mind-reading applications where one data set is split into a training and test set.
$>$ Even though the parameters estimated from average behavior in a different situation they are nonetheless used to interpret what a particular student is thinking at the moment.
$>$ A learning model allows one to adjust the expectations to reflect the progress of the student.

Conclusions

$>$ It is possible to meaningfully and rigorously relate brain imaging data to a detailed model of student-tutor interactions.
>Brain imaging data can guide model development which would lead to better cognitive tutors.
$>$ It is possible to use brain imaging data to to diagnose student problem solving in real-time with considerable accuracy.
$>$ The method can be fit to one data set and generalize to another data set.
$>$ While this demonstration uses only brain imaging data, real applications would want to integrate imaging data with behavioral information.

Thank You!

