
October 29, 2013

Carl K. Chang
Iowa State University

Situational Software Engineering

2

Trend Analysis of Computing

Human Perspective

Electronic

Digital

Birth of
ABC ENIAC

1937 1946 1968 1981 1991

petaFLOPS exaFLOPS
IBM 360

/ 370

SE
DCS

2008 2020 2050

System Perspective

DEC
PDP-11

VAX780

IBM PC
APPLE MAC

WWW Web Services
SOA
Personalization
Ubiquitous

Analytic SOA
Web 2.0
Pervasive Computing

Machine
Oriented

Hardware
Dominance

HLL Functional, Modular,
Structured

Software
Dominance

Object
Oriented

Aspect
Oriented

Component
Model Driven

Usability
Dominance

Service
Dominance

Human
Dominance

Blue Gene Optical Quantum

Privatization

1995 1984

NSFNET ARPANET

Human Perspective

Seamless
Computing

Autonomic
Computing
(mature)

Social
Computing
(norm)

Individualization

Past, Present, Future

3

Trend Analysis of Computing

System Perspective

Electronic
Digital

Birth of
ABC ENIAC

1937 1946 1968 1981 1991

IBM 360 / 370

SE
DCS

DEC
PDP-11

VAX780
IBM PC
APPLE MAC

WWW

Machine
Oriented

Hardware
Dominance

HLL
Functional, Modular
Structured

Software
Dominance

Object
Oriented

Aspect
Oriented

Usability
Dominance

NSFNET ARPANET

1984

Distant
Past

Recent
Past

4

Trend Analysis of Computing

Human Perspective

petaFLOPS exaFLOPS

2008 2020 2050
Web Services
SOA
Personalization
Ubiquitous

Analytic SOA
Web 2.0
Pervasive Computing

Component
Model Driven

Service
Dominance

Human
Dominance

Blue Gene

Aspect
Oriented

Privatization

1995

Optical Quantum

Seamless Computing Autonomic Computing
(mature)

Social Computing
(norm)

Individualization

Distant
Future

Present Recent
Future

2013

Personalization

Six Disruptive Drivers*
shaping the future

 Extreme Longevity
 Rise of a Smart Planet
 Computational World
 New Media Ecology [Tim O’Reilly]
 Super-structured Organizations
 Globally Connected World

* “Workforce Preparedness”: Future Work Skills 2020
Workshop. Apollo Research Institute for the Future,
2011.

5

The Five Forces of Context

 Age of Context. Robert Scoble & Shel Israel. 2014. Patrick
Brewster Press.

 Mobile, Social Media, Data, Sensors, Location
 Software engineering researchers need to wake up to ride on

these five forces.
 SE succeeded to some extent - still a long way to go…
 Falling short of:

– Recognizing the importance of “continuous/persistent” requirement for
human-in-the-loop

– Recognizing the dominance of data requirements
– Recognizing the needs to satisfy ever-changing (evolving)

desire/appetite of individual users far beyond what “personalization”
through parameterization can offer

6

One Recent Example: Google Glass

 Thad Starner, technical lead/manager and Georgia
Tech for Google Glass Development

 Weight only 49 grams with computing power > 1976
Cray-1 Supercomputer cost $8.8 million

 In 1991, Starner’s doctoral thesis mentioned “that
on-body systems can sense the user’s context.”

 Today, many wearable technologies further boost
the contextual technologies.

 The volatile nature of context-aware computing
introduces new challenges to software engineering.

7

Forward of the Book: Age of Context

 Forward by Marc Benioff, Founder/Chairman/CEO
of Salesforce.com:

 “In the connected world, customers are no longer
just a number or account; they are unique human
beings with a distinct set of needs. They have a
powerful voice that they know how to use. They
want a relationship on equal terms, and they expect
to be at the center of your world. Companies must
listen and engage and earn their trust every day.”

 SE has not been able to really treat each human
being as a unique individual.

8

Now - Computing with a Lot of DATA

 Data warehousing, data mining, text mining, image
mining, audio mining, video mining, spatial mining,
relation mining, crowd mining -> When there is data,
there is mining.

 The legendary “diapers and beer” connection (e.g.
Wal-Mart) started the Media Gold Rush!

 As we are marching into the Web 3.0 era, we need
software engineers, data engineers, knowledge
engineers and ontologists.

9

So much data – how to cope with it?

 Examples? Twitter: Number of tweets follows the
Moore’s Law !

 The DIKW structure of information
 What is missing in SE research is an effective

mechanism to organize contextual data for
enhanced computational intelligence in software
development and maintenance.

 That missing link, IMHO, is:

10

Situation

Context vs. Situation

 Context-awareness: fitting humans into data
– Data is the first-class citizen

 Situation-awareness: fitting data into humans
– Human is the first-class citizen

 Paradox: Is usability data-dominance or human-dominance?
– Requirements elicitation
– Usability study
– Metrics collected
– Data talks – Human listens -> This is not real human-centric

 Humans deal with situations not contexts.
 Our lives are primarily driven by situations, not contexts.
 Situations are -

 11

12

Situational Adaptability
David Autor, MIT

Sudden
[Rocky]

Surprise
[Sandy] Perpetual

[Muddy]

Fukushima

In the Era of Services/Cloud Computing

 Computing becomes more pervasive, mobile,
embedded and often invisible

 Computing with massive data
 Vastly diverse and versatile software features arise

– software services
 On-demand and in situ services are expected
 Upon the arrival of Services & Cloud Computing

armed with millions of servers Software Crisis
persists!

 Why so?

13

The Puzzled Productivity Study

 Moore’s Law: “Density of transistors on integrated
circuits doubles every two years”

 Brooks’s Law (twisted): “Programmer’s productivity
is 10 NCSL per day”

 Fernando J. Corbató Law: “The number of lines of
code a programmer can write in a fixed period of
time is the same independent of the language
used.”

 Question: If software (programming) productivity
follows the Moore’s Law, how many NCSL a
software engineer (programmer) should produce
per day?

14

A Hypothetical Calculation

 If a programmer used HLL (e.g. FORTRAN in 1954)
to produce 50,000 FLOPs of FORTRAN code per
day: following the Moore’s Law ->
50,000*2**(60/2)=53,687,091,200,000 FLOPs by
2014

 A software organization with 1,000 programmers will
be able to produce 53,687,091,200,000,000 FLOPs
= 53.687 Petaflops that can be executed by the
latest China’s Milkyway-2 in one second.

15

Make no mistake…

 Software Engineering was coined in 1968 – only 45
years of history

 Software Engineering also has great principles –
modularity and information hiding (Parnas)

1. Manage using a phased life-cycle plan.
2. Perform continuous validation.
3. Maintain disciplined product control.
4. Use modern programming practices.
5. Maintain clear accountability for
results.
6. Use better and fewer people.
7. Maintain a commitment to improve the
process. [Boehm 1983]

Software Engineering
had done great service
to mankind, such as:

Pervasive Software Services

17

Now, Answer the question again…

18

 Upon the arrival of Services & Cloud Computing
armed with millions of servers Software Crisis
persists!

 WHY?

Because of False Assumptions in SE

 We often assume that
– Infrastructure and resources are plenty and forever
– Devices are unlikely to break down
– Stable requirements are to be base-lined for builds
– Usability Study is sufficient to capture relative human intentions

 However, we often forget that
– Computing is now more volatile
– Humans do evolve (and often lie…)
– Usability study actually insulates developers … builds often done in

an isolated cubicle (developer’s comfort zone)
– And, Cloud is already here and will stay – new technical challenges

 Thus, the product cannot meet challenges of the evolving
environments and human expectations

 What can we do about it?
 19

A Word on the Complex Human

 Mentally, psychologically, physically and physiologically
complex

 Humans are never perfect – not the system engineers nor
the users

 Humans evolve as “situations” arise – human sensory
adaptability to contextual cues from the environment is
transformed into mind adaptability to perceived situations

 Extensive studies on human states: mental, emotional
motivational, intentional, etc. by psychologists, cognitive
scientists, physiologists, neuroscientists, sociologists,
logicians, linguists, anthropologists, etc., and computer
scientists (“things” must be computational!)

20

Human Beings Are Complex

21

President Johnson vs. Senator
Richard Russell (D, GA).

Professor Alex Pentland, MIT.
American Scientist, Vol. 98,

Sigma Xi, 2010

Human Demands Software Evolution

 As humans do perceive situational changes they would
expect Situational Adaptability of the system

 They also often desire “in situ” changes
 However, software systems must be designed with the

possibility of “in situ” changes or it can never be done
 The reality is that the technical challenge is huge so we must

make progress a step at a time
 The first step is to gain a fundamental understanding about a

feasible computational model of situations and intentions, as
well as the basic set of mechanisms to enable changes

22

Breaking Down Tasks to Services

 There are often several ways to achieve a task
 For example: GUI Designer must decide on a preferred

event sequence
 It may not best fit a particular user’s comfort zone – habit,

background, health condition, etc.
 Ordering the events to complete a service goal
 Listing of the parameter values (data range)
 Classifying the intended users
 Tasks are meant to meet human intentions; services are

meant to satisfy human desires
 Common Practice: Altering the properties of tasks or

rearranging task steps results in services to satisfy
new/changing desires

23

24

Software Evolution as a Version-up Cycle
– Most researchers have used the term as “various changes in

software systems (e.g., software release and update).”
– Software Evolution has a version-up cycle to adapt the software to

user requests and environments by producing new versions.

Current Software
Version

n1 n2

n3

n4

n5

n6

n7

e1
e2

e3

e4

e5

e7

Software defects or new requirements

Program codes and design models

Basic Concepts on Software Evolution

• Bugs
• Quality improvement
• Ever-changing requirements

Version-up
Cycle

Evolve

Release

Change

25

Software Evolution as a Version-up Cycle
– However this version-up cycle typically ignore…

 Personalization (privileged group accommodations)
 Adaptation to rapid changes

– Individual users’ situation
– Next-generation software

Basic Concepts on Software Evolution (cont’d)

Current Software
Version

n1 n2

n3

n4

n5

n6

n7

e1
e2

e3

e4

e5

e7

Software defects or new requirements

Program codes and design models

• Bugs
• Quality improvement
• Supplemental requirements

Version-up
Cycle

Evolve

Change

Release

 Modern software evolution should adapt to the followings:
 Timely provision of possible future generation of services
 Direct feedback from user contexts during run-time

26

Software Evolution @ Runtime
– We are seeking a new paradigm for software evolution to use

runtime feedback of context information.
– It should support instant speculation of requirement changes and

propose possible future generation of services on the fly.

Recent Concepts on Software Evolution

(2) Evolve

(1) Service Release
 (Runtime Test) (1) Monitoring

Service 1 in Environment A

Service 1 in Environment B

Service 2 in Environment B

Context Information
• Location with Time
• Access Pattern from a user
• Health Status
• Etc.

n1 n2

n3

n4

n5

n6

n7

n8

n9

n10

e1
e2

e3

e4

e5

e6

e7

e8
e9

Possible future
generations

Planned Services
Requirements

Evolution Cycle

27

Software Evolution @ Runtime
– Evolution cycle includes runtime feedback through three phases.
1) Monitoring to observe changes of individual users’ situation and intention,
2) Evolve to modify business process and corresponding services,
3) Service Release with runtime test.

Recent Concepts on Software Evolution

Evolution Cycle

(2) Evolve

(3) Service Release
 (Runtime Test) (1) Monitoring

Service 1 in Environment A

Service 1 in Environment B

Service 2 in Environment B

Context Information

Planned Services

• Location with Time
• Access Pattern from a user
• Health Status
• Etc.

n1 n2

n3

n4

n5

n6

n7

n8

n9

n10

e1
e2

e3

e4

e5

e6

e7

e8
e9

Possible future
generations

Focus on feedback of context
information into software evolution

Requirements

28

My thesis: Evolution can be “rapid” if we can capture human
intention change from a context-aware environment where
situations and intentions are the first-class citizens in the
requirements engineering and design process, and can be
captured and reasoned in run-time
As a result, a paradigm shift from the conventional software
engineering to the Situational Software Engineering is
necessary and perhaps imminent in order to support the fast
emerging Situational Computing

A Paradigm Shift in Software Engineering

Exactly what is a Situation?

 Logician’s definition:

The world consists of objects, properties of objects and
relations among objects. And there are parts of the
world, clearly or vaguely recognized in common sense
and human language. These parts of the world are
called situations. Events and episodes are situations in
time, scenes are visually perceived situations, etc.
[Barwise at el., 1980]

Studies on Situations

 Philosophy [McCarthy et al., 1969] [Barwise, 1989]
 Mathematical logic [Barwise et al., 1989]
 Cognitive and psychological sciences [McCarthy,

1968] [Barwise et al., 1983]
 Computational linguistic [Devlin, 1991] [Devlin et al.,

1996]
 Business communication [Devlin et al., 1996] [Devlin,

2001]
 Artificial intelligence [Reiter 1991] [Pinto, 1994]

[McCarthy, 1995]
 Software engineering [Yau et al., 2008]

[Mastrogiovanni et al., 2008]

What is Intention?

 Intention <> Desire in that [Malle 2001]:
– Action
– Reasoning
– Commitment

 Intention in Practical Reasoning [Bratman 89]:
– Future-directed Intention
– Prior Intention
– Derivative Intention

Department of Computer Science

December 19, 2011 Situ

A Situation-Theoretic Human-intention Driven Approach to Runtime
Software Service Evolution

Situ Framework – A situation-theoretic human-intention driven framework in
support of context-aware service evolution has been developed to realize this new
paradigm [1]. Rooted in situation theory, Situ enhances upon the original propositions
of situation with human internal mental states and environmental parameters as well as
observable user actions to form semantically richer definitions of situations and
intentions that are computationally feasible.

Reasoning about Human Intention Changes – The research project
aims to develop a formal computational model to monitor and reason about human
intention changes under the Situ framework. Combined with the notion of possible
worlds in Kripke semantics, which allows formal description of the relations between
users’ needs (user’s worlds) and designers’ understandings (designer’s worlds) of user
requirements, Situ-morphism provides the rules to determines whether the current
implementation no longer satisfies a user’s intentions (i.e., sequence of situations) and
locate the part of the system that requires evolution or replacement, in order to provide a
new release to satisfy the user. The traditional “retrofit” policy and practice for such
feature replacement takes too long by the emerging (tomorrow’s) standard. A rapid
“runtime retrofit” of modified or new features that directly enhances user’s experience in
the field seems to be overdue.

[1] C. K. Chang, H. Jiang, H. Ming and K. Oyama, “Situ: A Situation-Theoretic
Approach to Context-Aware Service Evolution,” IEEE Transactions on Services
Computing, col. 2, no. 3, 261-275, 2009.

The Situ Framework

Situation-Centric Software Methodology

 Situation Engineering: A domain expert who can elicit
and specify application requirements to capture
situations and human intentions.

 Software Engineering: A software engineer who can
build a service environment that can serve and evolve
according to situation specification and is tailored to an
individual (supported by “situation programming”.)

 Test Engineering: A test engineer who can ensure
system integrity for initial deployment and later evolution
cycles.

 Human Engineering: A human engineer who can model,
capture and/or infer human mental states to support
human-intention driven service environments.

Situ-morphism

36

s1 s2 s3 s4

s21 s31

There is a sub world wdi ⊆ Σi expected by a designer d.
<i, Σi, ⊨i > is a Situ-module where Σi is a requirement and i is an implementation.

A⇆C is Situ-morphism representing whole and part relationship between requirements
to implement a whole software service.

Situation S1 to S4 should be achievable by the user
who takes the actions to use a target software service.

A leaf nodes in wdi are goal for each
sequence of the situations addressed in

Situ framework.

s312

s311

wdi

Services are to Achieve System Goals

37

How to Capture or Predict Human Intention Change?
 One possible solution: To apply DBBN (e.g. Hidden

Markov Model) or CRF to infer intention change.
– Intentions => hidden variables (i.e. mental states are not

observable)
– Contexts => observable variables (i.e. environment)
– Intention Change  State Change or State Emergence

How to Effect Software Evolution?
 One possible solution: To apply Genetic Programming to

evolve the system
– Suggested revised code segments with fitness values

Software Evolution @ Runtime

In Sum: Prevailing approaches to
Software Evolution

 Brute Force
 Version/Configuration Control
 Parameterization
 Reconfigurable System
 Product Line Engineering (commonality/variability)
 Restructuring / Refactoring
 Evolutionary Paradigm
 My main thesis: We need a paradigm shift in order

to have a breakthrough.

38

39

– Based on De Jong’s definition
of coevolution, one of the two
populations is a learner and
another one is evaluator.

– End user can be the evaluator
since s/he can decide whether
the system evolution is
successful or not.

– End user can become a learner
because s/he has to learn the
evolved system (then system
becomes the evaluator.)

Human/System Co-Evolution

Concept of Coevolution Desire Goal

Put Into Practice – Smart Homes

• While there are many practical examples where
context-aware and situation-aware systems may
be considered we will focus on a peculiar
example that are emerging on the technology
horizon and you and me will be affected in our
life time – the Smart Home.

• Worldwide the population has been rapidly
graying – we need to afford “Age in Place”

University of Florida Smart House

Smart Home – What in the Kitchen?

 Use your imagination…  …to make it smarter!

42

43

Scenario in Smart Home

Smart Home Example

Use Cases of the Smart Home

We use an example to illustrate what kind of intention changes in the Smart Home should
be monitored and handled. Consider a 90-year-old woman who lives alone and has
difficulty moving around and turning on/off switches in each room.

Suppose that there is an intelligent smart home. The system’s use cases are:
 1) An automatic lighting service,
 2) Voice command service to control appliances such as TV.

44

Scenario in Smart Home – Case 1

Smart Home Example (cont’d)

Intention Change 1: This elderly resident wants to keep the light on
even if she already left the room due to sudden changes in her
vision range in the past 24 hours.
– Unfortunately, this new intention is against the predefined requirements

and therefore, the system would not respond as she intends. She has to
struggle to turn the light back on each time (supposing the system allows
manual overriding).

– With a voice command system, she can override the system without
difficulty, and the room light works as she desires.

 Statistically, from observing a large population of the user
community and the frequent occurring of the same/similar
episode, we may be able to identify the intention change.

 The SH system then notifies remote SH project developers of this episode, as
well as the in situ provision of alternative lighting service. The service can be
either automatically customized with her action or updated by the SH project
developer’s patch.

45

Scenario in Smart Home – Case 2

Smart Home Example (cont’d)

Intention Change 2: One day, she finds it difficult to walk. The caregiver
helps her to move around to accomplish certain tasks, and sometimes
tries to use the voice command feature of the SH remotely. Since the
voice command system is customized for the resident and not the
caregiver, the caregiver’s voice is not accepted.

The SH system should have the ability to identify residents with special
access privileges.
The system should be able to detect the caregiver’s need to access the
voice command system, and notify SH project developers. In this case, the
caregiver should be granted access privileges by request of the resident
and through confirmation of the “authority”. Security policies in the SH
system should be modified on the fly.

46

Smart Home Lab (Desire Inference [Dong 2003])
24 subjects participated; 21 usable sets of data - 10 testing/11 training
Facial Recognition & EEG observations were used

Smart Home Example (cont’d)

49

A more powerful situation-driven software
evolution approach is envisioned to support
individualized services that can evolve at runtime.
Human intention changes underscore the reasons
for service evolution; situational software
engineering ushers in a novel software evolution
process.
Situations may become better, or worse -> The
technology must simultaneously adapt to both a
growth model and a degradation model
Situ research requires interdisciplinary
collaboration – high risk, yet high payoff

Conclusions

Some Speculations

 A Hypothetical Software Law: The rate of software
productivity increase will eventually parallel that of
computer (hardware) engineering such as the
Moore’s Law once software engineering
researchers figure out a way to allow software to
evolve like humans

 For example, advances in brain informatics could
facilitate SE researchers to investigate the
possibility to provide individualized services to end-
users

50

More Speculations

 Who owns contextual information?
 Can Google freely exploit contextual information?
 Is a connected human or connected society healthy?
 Will Misinformation Superhighway repeat in the Age of

Context Era, e.g., False-Contextual (Deceptive) Marketing?
 Can crowd sourcing support software services evolution?
 Intention inference may not always successful; then?

 51

A Wild Speculation

 Following is Science Fiction:
 In Year 2075, we solve problems by loading problems

into human “cerebral organoids” and let it be solved.

52

 [Chang 2009]: Carl K. Chang, et al. Situ: A Situation-
Theoretic Approach to Context-Aware Services Evolution.
IEEE Trans. on Services Computing, 2:3, pp. 261-275.

 [Barr, 1979]: Barr, M. Autonomous Categories, Lecture
Notes in Mathematics, 752. Springer-Verlag, Heidelberg

 [Barr, 1991]: Barr, M. Autonomous categories and linear
logic, Mathematical Structures in Computer Science, 1.
159-178

 [Devlin et al., 1996]: Keith Devlin, Duska Rosenberg,
Language At Work-Analyzing Communication Breakdown
in the Workplace to Inform Systems Design, CSLI Lectures
Notes Number 66, Stanford University, 1996

References

 [McCarthy et al., 1969]: J. McCarthy and P.J. Hayes, Some
philosophical problems from the standpoint of artificial
intelligence. In: B. Meltzer and D. Michie, Editors, Machine
Intelligence, vol. 4, Edinburgh University Press (1969), pp.
463–502 http://www-formal.stanford.edu/jmc/mcchay69.html

 [McCarthy, 1995]: J. McCarthy, Situation calculus with
concurrent events and narrative http://www-
formal.stanford.edu/jmc/narrative.html (1995) web only

 [Pinto, 1994]: J.A. Pinto, Temporal Reasoning in the
Situation Calculus (2nd edition), Ph.D. Thesis, Department of
Computer Science, University of Toronto, Toronto, ON (Feb.
1994) Available as Technical Report KRR-TR-94-1

References

http://www-formal.stanford.edu/jmc/mcchay69.html�

 [Barwise et al., 1983]: Barwise, J. and Perry, J., Situation
and Attitudes, Bradford Books, MIT Press (1983)

 [Barwise at el., 1980]: Barwise, J. and Perry, J. The Situation
Underground, in Stanford Working Papers in Semantics, Vol.
1, eds. J. Barwise and I. Sag, Stanford Cognitive Science
Group 1980, Section D, pp.1–55

 [Devlin, 1991]: Keith Devlin, Logic and information,
Cambridge University Press, 1991

 [Devlin, 2001]: Keith Devlin, INFOSENSE: Turing Information
into Knowledge, W.H. Freeman and Company (2001)

 [Bratman 1989]: Michael Bratman, “Chapter 2 What is
Intention?”, in Intentions in COMMUNICATION, Ed. Philip
Cohen, Jerry Morgan and Martha Pollack, pp. 15-31, The
MIT Press,1989.

References

 [Reiter, 1991]: Raymond Reiter, The Frame Problem in
Situation Calculus: A Simple Solution (Sometimes) and a
Complete Result for Goal Regression, in Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of
Computation: Paper in Honor of John McCarthy, pages 359-
380. Academic Press, San Diego, CA, 1991

 [Poole, 1998]: David Poole, Decision Theory, the Situation
Calculus, and Conditional Plans.
http://www.cs.ubc.ca/spider/poole

 [Malle 2001]: Bertram Malle and Joshua Knobe, “The
Distinction between Desire and Intention: A Folk-Conceptual
Analysis, pp. 45-67, The MIT Press, 2001.

References

http://www.cs.ubc.ca/spider/poole�

 [Yau et al., 2008]: S. Yau, H. Gong, D. Huang, W. Gao,
and L. Zhu, Specification, decomposition and agent
synthesis for situation-aware service-based systems,
Journal of Systems and Software, Vol. 81, No. 10, pp.
1663-1680, 2008

 [Mastrogiovanni et al., 2008]: F. Mastrogiovanni, A.
Sgorbissa, and R. Zaccaria, Understanding events
relationally and temporally related: Context assessment
strategies for a smart home, in Second International
Symposium on Universal Communication (ISUC’ 08), 2008,
pp. 217-224

References

 [Kalfoglou et al., 2003]: YANNIS KALFOGLOU and MARCO
SCHORLEMMER, Ontology mapping: the state of the art,
The Knowledge Engineering Review (2003), 18:1:1-31
Cambridge University Press 2003

 [De Jong 2004]: De Jong, E.D. and J. B. Pollack. Ideal
Evaluation of Coevolution. Evolutionary Computation, Vol. 12,
Issue 2, pp. 159-192.

 [Town, 2004]: Christopher Town, Ontology-Driven Baysian
Networks for Dynamic Scene Understanding, 2004
conference on Computer Vision and Pattern Recognition
Workshop (CVPRW ‘04) Volume 7, pp. 116,, 2004

References

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	Six Disruptive Drivers*�shaping the future
	The Five Forces of Context
	One Recent Example: Google Glass
	Forward of the Book: Age of Context
	Now - Computing with a Lot of DATA
	So much data – how to cope with it?
	Context vs. Situation
	Situational Adaptability�David Autor, MIT
	In the Era of Services/Cloud Computing
	The Puzzled Productivity Study
	A Hypothetical Calculation
	Make no mistake…
	Pervasive Software Services
	Now, Answer the question again…
	Because of False Assumptions in SE
	A Word on the Complex Human
	Human Beings Are Complex
	Human Demands Software Evolution
	Breaking Down Tasks to Services
	Basic Concepts on Software Evolution
	Basic Concepts on Software Evolution (cont’d)
	Recent Concepts on Software Evolution
	Recent Concepts on Software Evolution
	A Paradigm Shift in Software Engineering
	Exactly what is a Situation?
	Studies on Situations
	What is Intention?
	スライド番号 32
	The Situ Framework
	Situation-Centric Software Methodology
	Situ-morphism
	スライド番号 36
	Software Evolution @ Runtime
	In Sum: Prevailing approaches to Software Evolution
	Human/System Co-Evolution
	Put Into Practice – Smart Homes
	スライド番号 41
	Smart Home – What in the Kitchen?
	Smart Home Example
	Smart Home Example (cont’d)
	Smart Home Example (cont’d)
	Smart Home Example (cont’d)
	スライド番号 47
	スライド番号 48
	Conclusions
	Some Speculations
	More Speculations
	A Wild Speculation
	References	
	References
	References
	References
	References
	References
	スライド番号 59

